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1. Introduction

Obtaining non-vanishing Yukawa couplings is one of the most important issues in realistic

superstring model building [1]. In this paper, we present a formalism for computing these

terms and explicitly demonstrate, within an important class of E8 ×E8 superstring vacua,

that non-vanishing Yukawa couplings are generated in the low energy effective theory.

In a series of papers [2 – 4] and [5], we presented a class of “heterotic standard model”

vacua within the context of the E8 × E8 heterotic superstring. The observable sector of

a heterotic standard model vacuum is N = 1 supersymmetric and consists of a stable,

holomorphic vector bundle, V , with structure group SU(4) over an elliptically fibered

Calabi-Yau threefold, X, with a Z3 × Z3 fundamental group. In [2 – 4], we gave non-trivial

checks on the slope-stability of the vector bundle V . A rigorous proof of the stability of
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this bundle was presented in [6]. The vector bundle V in [5] is also slope-stable. This

will be shown in detail in [7]. Each such bundle admits a gauge connection which, in

conjunction with a Wilson line, spontaneously breaks the observable sector E8 gauge group

down to the SU(3)C × SU(2)L ×U(1)Y standard model group times an additional gauged

U(1)B−L symmetry. The spectrum arises as the cohomology of the vector bundle V . For

the vacuum presented in [5], the matter spectrum is found to be precisely that of the

minimal supersymmetric standard model (MSSM). For this reason, we refer to [5] as the

“minimal” heterotic standard model. The vacua presented in [2 – 4] also have the matter

spectrum of the MSSM, with the exception of one additional pair of Higgs–Higgs conjugate

superfields. These vacua contain no exotic multiplets and no vector-like pairs of fields with

the exception of the Higgs pairs. They exist for both weak and strong string coupling.

All previous attempts to find realistic particle physics vacua in superstring theories [8 – 24]

have run into difficulties. These include predicting extra vector-like pairs of light fields,

multiplets with exotic quantum numbers in the low energy spectrum, enhanced gauge

symmetries and so on. Heterotic standard models avoid all of these problems. As for the

hidden sector, there is no known obstruction to making it N = 1 supersymmetric as well,

but we have not yet constructed the requisite hidden sector bundle. It is also unclear

whether that is even phenomenologically desirable. In any case, in this paper we consider

only the visible sector interactions.

Elliptically fibered Calabi-Yau threefolds with Z2 and Z2 × Z2 fundamental group

were first constructed in [25 – 27] and [28, 29], respectively. More recently, the existence

of elliptic Calabi-Yau threefolds with Z3 × Z3 fundamental group was demonstrated and

their classification given in [30]. In [31 – 34], methods for building stable, holomorphic

vector bundles with arbitrary structure group in E8 over simply-connected elliptic Calabi-

Yau threefolds were introduced. These results were greatly expanded in a number of

papers [25 – 27, 35 – 37] and then generalized to elliptically fibered Calabi-Yau threefolds

with non-trivial fundamental group in [27, 38, 28, 29]. To obtain a realistic spectrum, it

was found necessary to introduce a new method [25 – 29] for constructing vector bundles.

This method, which consists of building the requisite bundles by “extension” from simpler,

lower rank bundles, was used for manifolds with Z2 fundamental group in [39, 40, 27,

41, 42] and in the heterotic standard model context in [30]. In [2 – 4, 41, 42], it was

shown that to compute the complete low-energy spectrum of such vacua one must 1)

evaluate the relevant sheaf cohomologies, 2) find the action of the finite fundamental group

on these spaces and, finally, 3) tensor this with the action of the Wilson line on the

associated representation. The low energy spectrum is the invariant cohomology subspaces

under the resulting group action. This method was applied in [2 – 5] to compute the exact

spectrum of all multiplets transforming non-trivially under the action of the low energy

gauge group. The accompanying natural method of “doublet-triplet” splitting was also

discussed. A formalism was presented in [43] that allows one to enumerate and describe

the multiplets transforming trivially under the low energy gauge group, namely, the vector

bundle moduli.

Using the above, one can construct a class of heterotic standard models and compute

their entire low-energy spectrum. For example, using a Z2 Wilson line one can break a
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SU(5) GUT group to the standard model gauge group. Heterotic vacua in this context were

first computed in [41, 42]. This was recently refined in [44] to construct a realistic heterotic

standard model with three chiral families of quarks/leptons and one pair of Higgs–Higgs

conjugate fields. One can also use orbifold CFT to arrive at a minimal spectrum [45].

But for the purposes of this paper we will be interested Z3 × Z3 Wilson lines breaking a

Spin(10) GUT group to the standard model gauge group times U(1)B−L. As mentioned

previously, the observable sector spectrum consists exclusively of the three chiral families

of quarks/leptons (each family with a right-handed neutrino), either one [5] or two [2 – 4]

pairs of Higgs–Higgs conjugate fields and a small number of uncharged geometric and vector

bundle moduli. However, finding the particle spectrum is far from the end of the story.

To demonstrate that the particle physics in these vacua is realistic, one must construct the

interactions of these fields in the low energy effective Lagrangian. These interactions occur

in two distinct parts of the action. Recall that the matter part of an N = 1 supersymmetric

Lagrangian is completely described in terms of two functions, the superpotential and the

Kähler potential. Of these, the superpotential, being a “holomorphic” function of chiral

superfields, is much more amenable to computation using methods of algebraic geometry.

The superpotential itself is a sum of several different pieces, such as Higgs µ-terms and

Yukawa couplings. In a recent paper [46], it was shown how to compute Higgs µ-terms

in the superpotentials of heterotic standard models. In this paper, we continue our study

of holomorphic interactions by presenting a formalism for computing Yukawa terms. We

apply this method to calculate the Yukawa texture in the minimal heterotic standard

model [5].

Specifically, we do the following. In section 2, we review the relevant facts about the

structure of heterotic standard model vacua in general and the minimal heterotic vacuum

in particular. The formalism for computing the low energy spectrum is briefly discussed

and we give the results for the minimal heterotic standard model vacuum. The structure

of Yukawa terms are then analyzed and shown to occur as the product of three cohomology

groups, two corresponding to the quark/lepton doublets (Q,L) and singlets (u,d,ν,e), and

one corresponding to Higgs (H) and Higgs conjugate (H̄) fields in the effective low energy

theory. It follows that cubic terms of the form QHu, QH̄d, LHν and LH̄e are poten-

tially generated in the superpotential. Section 3 is devoted to discussing the first Leray

spectral sequence, which is associated with the projection of the covering threefold X̃ onto

the base space B2. The Leray decomposition of a sheaf cohomology group into (p, q) sub-

spaces is discussed and applied to the cohomology spaces relevant to Yukawa terms. It is

shown that the triple product is subject to a (p, q) selection rule which severely restricts

the allowed non-vanishing terms. The second Leray decomposition, associated with the

projection of the space B2 onto its base P
1, is presented in section 4. The decomposition

of any cohomology space into its [s, t] subspaces is discussed and applied to cohomologies

relevant to Yukawa terms. We show that Yukawa couplings are subject to yet another

selection rule associated with the [s, t] decomposition. Finally, it is demonstrated that the

subspaces of cohomology that form non-vanishing cubic terms project non-trivially onto

both quark/lepton doublets and singlets, as well as Higgs and Higgs conjugate fields under

the action of the Z3 × Z3 group.
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We conclude that non-vanishing Yukawa terms proportional to QHu, QH̄d, LHν

and LH̄e appear in the low energy superpotential of a minimal heterotic standard model.

However, their structure is constrained by the above selection rules. The exact texture

of the Yukawa interactions and its implications for the quark/lepton mass matrix are

presented in section 5. We show that, in a suitable basis, one out of the three quark/lepton

families is, prior to higher order and non-perturbative corrections, massless. The remaining

two generations have masses of the order of the electroweak symmetry breaking scale.

2. Preliminaries

2.1 Heterotic string on a Calabi-Yau manifold

The observable sector of an E8 ×E8 heterotic standard model vacuum consists of a stable,

holomorphic vector bundle, V , over a Calabi-Yau threefold, X. In particular, we are inter-

ested in an SU(4) instanton, breaking the low energy gauge group down to its commutant

E8
SU(4)

// Spin(10) . (2.1)

Additionally, we want Z3 × Z3 Wilson lines W . The Spin(10) group is then spontaneously

broken by the holonomy group of W to

Spin(10)
Z3×Z3

// SU(3)C × SU(2)L × U(1)Y × U(1)B−L . (2.2)

In this way, the standard model gauge group emerges in the low energy effective theory

multiplied by an additional U(1) gauge group whose charges correspond to B−L quantum

numbers.

For W to exist, the Calabi-Yau manifold X must have fundamental group Z3 × Z3.

The physical properties of this vacuum are most easily deduced not from X and V but,

rather, from two closely related entities, which we denote by X̃ and Ṽ respectively. X̃ is a

simply-connected Calabi-Yau threefold which admits a freely acting Z3 × Z3 group action

such that

X = X̃
/(

Z3 × Z3

)
. (2.3)

That is, X̃ is the universal covering space of X. Similarly, Ṽ is a stable, holomorphic

vector bundle over X̃ with structure group SU(4) which is equivariant under the action of

Z3 × Z3. Then,

V = Ṽ
/(

Z3 × Z3

)
. (2.4)

The covering space X̃ for a heterotic standard model was discussed in detail in [30]. Here,

it suffices to recall that X̃ is a fiber product

X̃ = B1 ×P1 B2 (2.5)

of two rational elliptic (dP9) surfaces B1 and B2 with Z3 × Z3 action. Thus, X̃ is elliptically

fibered over both surfaces with the projections

π1 : X̃ → B1 , π2 : X̃ → B2 . (2.6)
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The surfaces B1 and B2 are themselves elliptically fibered over P
1 with maps

β1 : B1 → P
1 , β2 : B2 → P

1 . (2.7)

Together, these projections yield the commutative diagram

X̃
π2

ÂÂ
??

??
??π1

ÄÄÄÄ
ÄÄ

ÄÄ

B1

β1 ÂÂ
??

??
??

B2

β2ÄÄÄÄ
ÄÄ

ÄÄ

P
1 .

(2.8)

The invariant homology ring of each special dP9 surface is generated by two Z3 × Z3 in-

variant curve classes f and t. Using the projections in eq. (2.6), these can be pulled back

to divisor classes

τ1 = π−1
1 (t1) , τ2 = π−1

2 (t2) , φ = π−1
1 (f1) = π−1

2 (f2) (2.9)

on X̃. These three classes generate the even invariant homology ring of X̃ . In particular,

span{τ1, τ2, φ} = H2
(
X̃, C

)Z3×Z3

(2.10)

is the Z3 × Z3 invariant part of the Kähler moduli space.

2.2 The gauge bundle

The crucial ingredient in a heterotic standard model is the choice of the observable sector

vector bundle Ṽ. These bundles are constructed using a generalization of the method of

bundle extensions [27, 29]. Specifically, Ṽ is the extension

0 −→ V1 −→ Ṽ −→ V2 −→ 0 (2.11)

of two rank two bundles V1 and V2 on X̃. The solution for V1 and V2 leading to the minimal

heterotic standard model is as follows. Define

V1 = O eX
(−τ1 + τ2) ⊗ π∗

1(W1) , V2 = O eX
(τ1 − τ2) ⊗ π∗

2(W2) , (2.12)

where O eX
(∓τ1± τ2) are line bundles on X̃ and the rank 2 bundles W1, W2 are constructed

via an equivariant version of the Serre construction as

0 −→ χ1OB1
(−f1) −→ W1 −→ χ2

1OB1
(f1) ⊗ IB1

3 −→ 0 (2.13)

and

0 −→ χ2
2OB2

(−f2) −→ W2 −→ χ2OB2
(f2) ⊗ IB2

6 −→ 0 , (2.14)

where IB1

3 and IB2

6 denote the ideal sheaf1 of 3 and 6 points in B1 and B2 respectively. The

characters χ1 and χ2 are third roots of unity which generate the first and second factors

1The analytic functions vanishing at the respective points.
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of Z3 × Z3. The observable sector equivariant bundle Ṽ is then an invariant element of

the space of extensions defined in eq. (2.11). The vector bundle Ṽ so-constructed is slope-

stable [7].

Let R be any representation of Spin(10) and U(Ṽ)R the associated tensor product

bundle of Ṽ. Then, each sheaf cohomology space H∗
(
X̃, U(Ṽ)R

)
carries a specific represen-

tation of Z3 × Z3. Similarly, the Wilson line W manifests itself as a Z3 × Z3 group action

on each representation R of Spin(10). As discussed in detail in [4], the low-energy particle

spectrum is given by

ker
(
∂
/

eV

)
=

(
H0

(
X̃,O eX

)
⊗ 45

)Z3×Z3

⊕
(
H1

(
X̃, Ṽ

∨)
⊗ 16

)Z3×Z3

⊕
(
H1

(
X̃, Ṽ

)
⊗ 16

)Z3×Z3

⊕
(
H1

(
X̃,∧2Ṽ

)
⊗ 10

)Z3×Z3

⊕
(
H1

(
X̃, ad(Ṽ)

)
⊗ 1

)Z3×Z3

,

(2.15)

where the superscript indicates the invariant subspace under the action of Z3 × Z3. The

invariant cohomology space
(
H0(X̃,O eX

)⊗45
)Z3×Z3 corresponds to gauge superfields in the

low-energy spectrum carrying the adjoint representation of the gauge group. The matter

cohomology spaces

(
H1(X̃, Ṽ

∨
) ⊗ 16

)Z3×Z3

,
(
H1(X̃, Ṽ) ⊗ 16

)Z3×Z3

,
(
H1(X̃,∧2Ṽ) ⊗ 10

)Z3×Z3

(2.16)

were all explicitly computed in [4]. One finds that H1
(
X̃, Ṽ

∨)
= 0 and, hence, there are

no vector-like pairs of quark/lepton families. The space
(
H1(X̃, Ṽ) ⊗ 16

)Z3×Z3 consists of

three chiral families of quarks/leptons, each family with a right-handed neutrino [47], and

transforming as

Q =
(
3,2, 1, 1

)
, u =

(
3,1,−4,−1

)
, d =

(
3,1, 2,−1

)
(2.17)

and

L =
(
1,2,−3,−3

)
, e =

(
1,1, 6, 3

)
, ν =

(
1,1, 0, 3

)
(2.18)

under SU(3)C ×SU(2)L ×U(1)Y ×U(1)B−L. We have displayed the quantum numbers 3Y

and 3(B −L) for convenience. The cohomology space
(
H1(X̃,∧2Ṽ)⊗ 10

)Z3×Z3 is spanned

by one vector-like pair of Higgs–Higgs conjugate superfields

H =
(
1,2, 3, 0

)
, H̄ =

(
1,2,−3, 0

)
. (2.19)

That is, the matter spectrum is precisely that of the MSSM. The remaining cohomology

space,
(
H1(X̃, ad(Ṽ))⊗1

)Z3×Z3 , was computed using the formalism introduced in [43] and

corresponds to 13 vector bundle moduli.

2.3 Cubic terms in the superpotential

In this paper, we will focus on computing Yukawa terms. It follows from eq. (2.15) that the

4-dimensional Higgs and quark/lepton fields correspond to certain ∂̄-closed (0, 1)-forms on

X̃ with values in the vector bundle ∧2Ṽ and Ṽ respectively. Since both H and H̄ arise from

– 6 –
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the same cohomology space, we will denote either of these 1-forms simply as ΨH . For the

same reason, we will schematically represent any quark/lepton doublet by Ψ(2) and any

singlet 1-form by Ψ(1), in any family. They can be written as

ΨH = ψH
ῑ[ab] dz̄ῑ, Ψ(1) = ψ

(1)
ῑa dz̄ῑ, Ψ(2) = ψ

(2)
ῑb dz̄ῑ, (2.20)

where a, b are valued in the SU(4) bundle Ṽ and {zι, z̄ῑ} are coordinates on the Calabi-

Yau threefold X̃ . Doing the dimensional reduction of the 10-dimensional Lagrangian yields

cubic terms in the superpotential of the 4-dimensional effective action. It turns out [13]

that the coefficients of the cubic couplings are simply the various allowed ways to obtain a

number out of the forms ΨH , Ψ(1), Ψ(2). That is

W = · · · + λuQHu + λdQH̄d + λνLHν + λeLH̄e (2.21)

with the coefficients λ determined by

λ =

∫

eX

Ω ∧ Tr
[
Ψ(2) ∧ ΨH ∧ Ψ(1)

]
=

=

∫

eX

Ω ∧
(
εabcdψ

(2)
ῑa ψH

κ̄[bc] ψ
(1)
ε̄d

)
dz̄ῑ ∧ dz̄κ̄ ∧ dz̄ε̄

(2.22)

and Ω is the holomorphic (3, 0)-form. Mathematically, we are using the wedge product

together with a contraction of the vector bundle indices (that is, the determinant ∧4Ṽ =

O eX
) to obtain a product

H1
(
X̃, Ṽ

)
⊗ H1

(
X̃,∧2Ṽ

)
⊗ H1

(
X̃, Ṽ

)
−→

−→ H3
(
X̃, Ṽ ⊗∧2Ṽ ⊗ Ṽ

)
−→ H3

(
X̃,O eX

)
(2.23)

plus the fact that on the Calabi-Yau manifold X̃

H3
(
X̃,O eX

)
= H3

(
X̃,K eX

)
= H

3,3
∂̄

(
X̃

)
= H6

(
X̃

)
(2.24)

can be integrated over. If one were to use the heterotic string with the “standard embed-

ding”, then the above product would simplify further to the intersection of certain cycles

in the Calabi-Yau threefold [48, 49]. However, in our case there is no such description.

Hence, to compute Yukawa terms, we must first analyze the cohomology groups

H1
(
X̃, Ṽ

)
, H1

(
X̃,∧2Ṽ

)
, H3

(
X̃,O eX

)
(2.25)

and the action of Z3 × Z3 on these spaces. We then have to evaluate the product in

eq. (2.23). As we will see in the following sections, the two independent elliptic fibrations

of X̃ will force some, but not all, products to vanish.
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3. The first elliptic fibration

3.1 The Leray spectral sequence

As discussed in detail in [4], the cohomology spaces on X̃ are obtained by using two Leray

spectral sequences. In this section, we consider the first of these sequences corresponding

to the projection

X̃
π2−→ B2. (3.1)

For any sheaf F on X̃, the Leray spectral sequence tells us that2

H i
(
X̃,F

)
=

p+q=i⊕

p,q

Hp
(
B2, R

qπ2∗F
)
, (3.2)

where the only non-vanishing entries are for p = 0, 1, 2 (since dimC(B2) = 2) and q = 0, 1

(since the fiber of X̃ is an elliptic curve, therefore of complex dimension one). Note that

the cohomologies Hp(B2, R
qπ2∗F) fill out the 2 × 3 tableau3

q=1 H0
(
B2, R

1π2∗F
)

H1
(
B2, R

1π2∗F
)

H2
(
B2, R

1π2∗F
)

q=0 H0
(
B2, π2∗F

)
H1

(
B2, π2∗F

)
H2

(
B2, π2∗F

)

p=0 p=1 p=2

⇒ Hp+q
(
X̃,F

)
, (3.3)

where “⇒ Hp+q
(
X̃,F

)
” reminds us of which cohomology group the tableau is computing.

Such tableaux are very useful in keeping track of the elements of Leray spectral sequences.

As is clear from eq. (3.2), the sum over the diagonals yields the desired cohomology of F .

In the following, it will be very helpful to define

Hp
(
B2, R

qπ2∗F
)
≡

(
p, q

∣∣F
)
. (3.4)

Using this abbreviation, the tableau eq. (3.3) reads

q=1
(
0, 1

∣∣F
) (

1, 1
∣∣F

) (
2, 1

∣∣F
)

q=0
(
0, 0

∣∣F
) (

1, 0
∣∣F

) (
2, 0

∣∣F
)

p=0 p=1 p=2

⇒ Hp+q
(
X̃,F

)
. (3.5)

3.2 Degrees and products

On the level of differential forms, we can understand the Leray spectral sequence as de-

composing differential forms into the number p of legs in the direction of the base and the

number q of legs in the fiber direction. Obviously, this extra grading is preserved under

the wedge-product of the differential forms. Hence, any product

H i
(
X̃,F1

)
⊗ Hj

(
X̃,F2

)
−→ H i+j

(
X̃,F1 ⊗F2

)
(3.6)

2In all the spectral sequences we are considering in this paper, higher differentials vanish trivially. Hence,

the E2 and E∞ tableaux are equal and we will not distinguish them in the following. Furthermore, there

are no extension ambiguities for C-vector spaces.
3Recall that the zero-th derived push-down is just the ordinary push-down, R

0
π2∗ = π2∗.

– 8 –



J
H
E
P
0
4
(
2
0
0
6
)
0
1
9

not only has to end up in overall degree i + j, but also has to preserve the (p, q)-grading.

That is,

(
p1, q1

∣∣F1

)
⊗

(
p2, q2

∣∣F2

)
//
(
p1 + p2, q1 + q2

∣∣F1 ⊗F2

)

Hp1+q1

(
X̃,F1

)∩

⊗ Hp2+q2

(
X̃,F2

)∩

// Hp1+p2+q1+q2

(
X̃,F1 ⊗F2

)
.

∩ (3.7)

This is all we are going to need in the following, but we would like to mention the following

caveat. Although it does not happen here, sometimes the push-down is not a vector bundle,

but a (non-locally free) sheaf. Then the identification with bundle-valued differential forms

is not possible. The way around this is well-known; one has to replace the coherent sheaf

by a complex of vector bundles. Now one can again think in terms of differential forms,

but at the cost of working in the derived category. What can and does happen in general

is the appearance of derived tensor products. That is, the tensor product of complexes

may no longer be quasi-isomorphic to a complex with only one entry. The effect is that

the product ends up in

(
p1, q1

∣∣F1

)
⊗

(
p2, q2

∣∣F2

)
−→

min(hd(F1),hd(F2))⊕

n=0

(
p1 + p2 + n, q1 + q2 − n

∣∣F1 ⊗F2

)
, (3.8)

where hd
(
Fi

)
+ 1 is the length of the shortest locally free resolution of Fi. In all products

that occur in this paper hd(F) = 0 and, hence, eq. (3.8) simplifies to eq. (3.7).

3.3 The first Leray decomposition of the volume form

Let us first discuss the (p, q) Leray tableau for the sheaf F = O eX
, which is the last term

in eq. (2.25). Since this is the trivial line bundle, it immediately follows that

q=1 0 0 1

q=0 1 0 0
p=0 p=1 p=2

⇒ Hp+q
(
X̃,O eX

)
. (3.9)

From eqns. (3.2) and (3.9) we see that

H3
(
X̃,O eX

)
=

(
2, 1

∣∣O eX

)
= 1, (3.10)

where the 1 indicates that H3(X̃,O eX
) is a one-dimensional space carrying the trivial action

of Z3 × Z3.

3.4 The first Leray decomposition of Higgs fields

Now consider the (p, q) Leray tableau for the sheaf F = ∧2Ṽ, which is the second term in

eq. (2.25). This can be explicitly computed and is given by

q=1 0 ρ4 0

q=0 0 ρ4 0
p=0 p=1 p=2

⇒ Hp+q
(
X̃,∧2Ṽ

)
, (3.11)

– 9 –



J
H
E
P
0
4
(
2
0
0
6
)
0
1
9

where ρ4 is the four-dimensional representation

ρ4 = χ2 ⊕ χ2
2 ⊕ χ1χ

2
2 ⊕ χ2

1χ2 (3.12)

of Z3 × Z3. In general, it follows from eq. (3.2) that H1(X̃,∧2Ṽ) is the sum of the two

subspaces
(
0, 1

∣∣∧2Ṽ
)
⊕

(
1, 0

∣∣∧2Ṽ
)
. However, we see from the Leray tableau eq. (3.11) that

the
(
0, 1

∣∣∧2Ṽ
)

space vanishes. Hence,

H1
(
X̃,∧2Ṽ

)
=

(
1, 0

∣∣∧2Ṽ
)

= ρ4. (3.13)

3.5 The first Leray decomposition of the quark/lepton fields

Now consider the (p, q) Leray tableau for the sheaf F = Ṽ, which is the first term in

eq. (2.25). This can be explicitly computed and is given by

q=1 RG 0 0

q=0 0 RG⊕2 0
p=0 p=1 p=2

⇒ Hp+q
(
X̃, Ṽ

)
, (3.14)

where RG is the regular representation of Z3 × Z3 given by

RG = 1 ⊕ χ1 ⊕ χ2 ⊕ χ2
1 ⊕ χ2

2 ⊕ χ1χ2 ⊕ χ1χ
2
2 ⊕ χ2

1χ2 ⊕ χ2
1χ

2
2. (3.15)

It follows from eq. (3.2) that H1(X̃, Ṽ) is the sum of the two subspaces

H1
(
X̃, Ṽ

)
=

(
0, 1

∣∣Ṽ
)
⊕

(
1, 0

∣∣Ṽ
)
. (3.16)

Furthermore, eq. (3.14) tells us that

(
0, 1

∣∣Ṽ
)

= RG,
(
1, 0

∣∣Ṽ
)

= RG⊕2. (3.17)

Technically, the structure of eq. (3.16) is associated with the fact that the cohomology

H∗
(
X̃, Ṽ

)
decomposes into H∗

(
X̃, V1

)
⊕ H∗

(
X̃, V2

)
. It turns out that the two subspaces

in eq. (3.16) arise as

RG = H1
(
X̃, V1

)
, RG⊕2 = H1

(
X̃, V2

)
(3.18)

respectively.

3.6 The (p,q) selection rule

Having computed the decompositions of H3(X̃,O eX
), H1(X̃,∧2Ṽ) and H1(X̃, Ṽ) into their

(p, q) Leray subspaces, we can now analyze the (p, q) components of the triple prod-

uct

H1
(
X̃, Ṽ

)
⊗ H1

(
X̃,∧2Ṽ

)
⊗ H1

(
X̃, Ṽ

)
−→ H3

(
X̃,O eX

)
(3.19)
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given in eq. (2.23). Inserting eqns. (3.13) and (3.16), we see that

H1
(
X̃, Ṽ

)
⊗ H1

(
X̃,∧2Ṽ

)
⊗ H1

(
X̃, Ṽ

)
=

((
0, 1

∣∣Ṽ
)
⊕

(
1, 0

∣∣Ṽ
))

⊗
(
1, 0

∣∣∧2Ṽ
)
⊗

((
0, 1

∣∣Ṽ
)
⊕

(
1, 0

∣∣Ṽ
))

=
((

0,1
∣∣eV

)
⊗
(
1,0

∣∣∧2eV
)
⊗
(
1,0

∣∣eV
))⊕2

︸ ︷︷ ︸
total (p, q) degree = (2,1)

⊕
((

1,0
∣∣eV

)
⊗
(
1,0

∣∣∧2eV
)
⊗
(
1,0

∣∣eV
))

︸ ︷︷ ︸
total (p, q) degree = (3,0)

⊕
((

0,1
∣∣eV

)
⊗
(
0,1

∣∣∧2eV
)
⊗
(
0,1

∣∣eV
))

︸ ︷︷ ︸
total (p, q) degree = (0,3)

(3.20)

Because of the (p, q) degree, we see from eq. (3.10) that only the first term can have a

non-zero product in

H3
(
X̃,O eX

)
=

(
2, 1

∣∣O eX

)
. (3.21)

It follows that the first quark/lepton family, which arises from

(
0, 1

∣∣Ṽ
)

= RG, (3.22)

will form non-vanishing Yukawa terms with the second and third quark/lepton families

coming from (
1, 0

∣∣Ṽ
)

= RG⊕2. (3.23)

All other Yukawa couplings must vanish. We refer to this as the (p, q) Leray degree selection

rule. We conclude that the only non-zero product in eq. (3.19) is of the form

(
0, 1

∣∣Ṽ
)
⊗

(
1, 0

∣∣∧2Ṽ
)
⊗

(
1, 0

∣∣Ṽ
)
−→

(
2, 1

∣∣O eX

)
. (3.24)

Roughly what happens is the following. The holomorphic (3, 0)-form Ω has two legs in the

base and one leg in the fiber direction. According to eq. (3.13), both 1-forms ΨH corre-

sponding to Higgs and Higgs conjugate have their one leg in the base direction. Therefore,

the wedge product in eq. (2.22) can only be non-zero if one quark/lepton 1-form Ψ has

its leg in the base direction and the other quark/lepton 1-form Ψ has its leg in the fiber

direction.

We conclude that due to a selection rule for the (p, q) Leray degree, the Yukawa terms

in the effective low energy theory can involve only a coupling of the first quark/lepton

family to the second and third. All other Yukawa couplings must vanish.

4. The second elliptic fibration

4.1 The second Leray spectral sequence

So far, we only made use of the fact that our Calabi-Yau manifold is an elliptic fibration

over the base B2. But the dP9 surface B2 is itself elliptically fibered over P
1. Consequently,

there is yet another selection rule coming from the second elliptic fibration. Therefore, we

now consider the second Leray spectral sequence corresponding to the projection

B2
β2

−→ P
1. (4.1)
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For any sheaf F̂ on B2, the Leray sequence now starts with a 2 × 2 Leray tableau

t=1 H0
(
P

1, R1β2∗F̂
)

H1
(
P

1, R1β2∗F̂
)

t=0 H0
(
P

1, β2∗F̂
)

H1
(
P

1, β2∗F̂
)

s=0 s=1

⇒ Hs+t
(
B2, F̂

)
. (4.2)

Again, the sum over the diagonals yields the desired cohomology of F̂ . Note that to

evaluate the product eq. (3.24), we need the [s, t] Leray tableaux for

F̂ = R1π2∗

(
Ṽ
)
, π2∗

(
Ṽ
)
, π2∗

(
∧2 Ṽ

)
, R1π2∗

(
O eX

)
. (4.3)

In the following, it will be useful to define

Hs

(
P

1, Rtβ2∗

(
Rqπ2∗

(
F

)))
≡

[
s, t

∣∣q,F
]
. (4.4)

One can think of
[
s, t

∣∣q,F
]

as the subspace of H∗
(
X̃,F

)
that can be written as forms with

q legs in the π2-fiber direction, t legs in the β2-fiber direction, and s legs in the base P
1

direction.

4.2 The second Leray decomposition of the volume form

Let us first discuss the [s, t] Leray tableau for F̂ = R1π2∗

(
O eX

)
= KB2

, the canonical line

bundle. It follows immediately that

t=1 0 1

t=0 0 0
s=0 s=1

⇒ Hs+t
(
B2, R

1π2∗

(
O eX

))
. (4.5)

In our notation, this means that

H2
(
B2, R

1π2∗

(
O eX

))
=

[
1, 1

∣∣1,O eX

]
(4.6)

has pure [s, t] = [1, 1] degree. To summarize, we see that

H3
(
X̃,O eX

)
=

(
2, 1

∣∣O eX

)
=

[
1, 1

∣∣1,O eX

]
= 1. (4.7)

4.3 The second Leray decomposition of Higgs fields

Now consider the [s, t] Leray tableau for the sheaf F̂ = π2∗

(
∧2 Ṽ

)
. This can be explicitly

computed and is given by

t=1 χ1χ
2
2 0

t=0 0 χ2 ⊕ χ2
2 ⊕ χ2

1χ2

s=0 s=1

⇒ Hs+t
(
B2, π2∗

(
∧2 Ṽ

))
. (4.8)

This means that the 4 copies of the 10 of Spin(10) given in eq. (3.13) split as

H1
(
X̃,∧2Ṽ

)
=

(
1, 0

∣∣∧2Ṽ
)

=
[
0, 1

∣∣0,∧2Ṽ
]
⊕

[
1, 0

∣∣0,∧2Ṽ
]
, (4.9)
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where

[
0, 1

∣∣0,∧2Ṽ
]

= χ1χ
2
2[

1, 0
∣∣0,∧2Ṽ

]
= χ2 ⊕ χ2

2 ⊕ χ2
1χ2.

(4.10)

Note that
[
0, 1

∣∣0,∧2Ṽ
]
⊕

[
1, 0

∣∣0,∧2Ṽ
]

= ρ4 (4.11)

in eq. (3.12), as it must.

4.4 The second Leray decomposition of the quark/lepton fields

Finally, let us consider the [s, t] Leray tableau for the quark/lepton fields. We have already

seen that, due to the (p, q) selection rule, both the first quark/lepton family arising from

(
0, 1

∣∣Ṽ
)

= RG (4.12)

and the second and third quark/lepton families coming from

(
1, 0

∣∣Ṽ
)

= RG⊕2 (4.13)

must occur in non-vanishing Yukawa interactions. Therefore, we are only interested in the

[s, t] decomposition of each of these subspaces. The
(
0, 1

∣∣Ṽ
)

subspace is associated with the

degree 0 cohomology of the sheaf R1π2∗

(
Ṽ
)
. The corresponding Leray tableau is given by

t=1 0 0

t=0 RG 0
s=0 s=1

⇒ Hs+t
(
B2, R

1π2∗

(
Ṽ
))

. (4.14)

It follows that the first family of quarks/leptons has [s, t] degree [0, 0],

(
0, 1

∣∣Ṽ
)

=
[
0, 0

∣∣1, Ṽ
]

= RG. (4.15)

The
(
1, 0

∣∣Ṽ
)

subspace is associated with the degree 1 cohomology of the sheaf π2∗

(
Ṽ
)
. The

corresponding Leray tableau is given by

t=1 RG⊕2 0

t=0 0 0
s=0 s=1

⇒ Hs+t
(
B2, π2∗

(
Ṽ
))

. (4.16)

It follows that the second and third families of quarks/leptons has [s, t] degree [0, 1],

(
1, 0

∣∣Ṽ
)

=
[
0, 1

∣∣1, Ṽ
]

= RG⊕2. (4.17)
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4.5 The [s,t] selection rule

Having computed the decompositions of the relevant cohomology spaces into their [s, t]

Leray subspaces, we can now calculate the triple product eq. (2.23). The (p, q) selection

rule dictates that the only non-zero product is of the form eq. (3.24). Now split each term in

this product into its [s, t] subspaces, as given in eqns. (4.7), (4.10), and (4.15) respectively.

The result is

[
0, 0

∣∣1, Ṽ
]
⊗

([
0, 1

∣∣0,∧2Ṽ
]
⊕

[
1, 0

∣∣0,∧2Ṽ
])

⊗
[
0, 1

∣∣1, Ṽ
]

−→
[
1, 1

∣∣1,O eX

]
. (4.18)

Clearly, this triple product vanishes by degree unless we choose the
[
1, 0

∣∣0,∧2Ṽ
]

from the(
1, 0

∣∣∧2Ṽ
)

subspace. In this case, eq. (4.18) becomes
[
0, 0

∣∣1, Ṽ
]
⊗

[
1, 0

∣∣0,∧2Ṽ
]
⊗

[
0, 1

∣∣1, Ṽ
]
−→

[
1, 1

∣∣1,O eX

]
, (4.19)

which is consistent.

We conclude that there is, in addition to the (p, q) selection rule discussed above, a [s, t]

Leray degree selection rule. This rule continues to allow non-vanishing Yukawa couplings

of the first quark/lepton family with the second and third quark/lepton families, but only

through the [
1, 0

∣∣0,∧2Ṽ
]

= χ2 ⊕ χ2
2 ⊕ χ2

1χ2 (4.20)

component of
(
1, 0

∣∣∧2Ṽ
)

in eq. (4.9).

4.6 Wilson lines

We have, in addition to the SU(4) instanton, a non-vanishing Wilson line. Its effect is to

break the Spin(10) gauge group down to the desired SU(3)C ×SU(2)L ×U(1)Y ×U(1)B−L

gauge group. First, consider the 16 matter representations. We choose the Wilson line W

so that its Z3 × Z3 action on each 16 is given by

16 =
[
χ1χ

2
2Q ⊕ χ2

2e ⊕ χ2
1χ

2
2u

]
⊕

[
L ⊕ χ2

1d
]
⊕ χ2ν, (4.21)

where the representations Q,u,d and L,ν,e were defined in eqns. (2.17) and (2.18), respec-

tively. Recall from eqns. (3.16) and (3.17) that H1
(
X̃, Ṽ

)
= RG ⊕ RG⊕2. Tensoring any

RG subspace of the cohomology space H1
(
X̃, Ṽ

)
with a 16 using eqns. (3.15) and (4.21),

we find that the invariant subspace under the Z3 × Z3 action is
(
RG ⊗ 16

)Z3×Z3

= span
{
Q,u, d, L, ν, e

}
(4.22)

It follows that each RG subspace of H1
(
X̃, Ṽ

)
projects to a complete quark/lepton family at

low energy. This justifies our identification of the subspace RG with the first quark/lepton

family and the subspace RG⊕2 with the second and third quark/lepton families throughout

the text.

Second, notice that each fundamental matter field in the 10 can be broken to a Higgs

field, a color triplet, or projected out. In particular, we are going to choose the Wilson line

W so that its Z3 × Z3 action on a 10 representation of Spin(10) is given by

10 =
[
χ2

2H ⊕ χ2
1χ

2
2C

]
⊕

[
χ2H̄ ⊕ χ1χ2C̄

]
, (4.23)
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where H and H̄ are defined in eq. (2.19) and

C =
(
3,1,−2,−2

)
, C̄ =

(
3,1, 2, 2

)
(4.24)

are the color triplet representations of SU(3)C × SU(2)L × U(1)Y × U(1)B−L. Tensoring

this with the cohomology space H1
(
X̃,∧2Ṽ

)
, we find the invariant subspace under the

combined Z3 × Z3 action on the cohomology space and the Wilson line to be

(
H1

(
X̃,∧2Ṽ

)
⊗ 10

)Z3×Z3

= span
{
H, H̄

}
. (4.25)

Hence, precisely one pair of Higgs–Higgs conjugate fields survives the Z3 × Z3 quotient. As

required for any realistic model, all color triplets are projected out. The new information

now is the (p, q) and [s, t] degrees of the Higgs fields. Using the decompositions eqns. (3.13)

and (4.9) of H1
(
X̃,∧2Ṽ

)
, we find

(
H1

(
X̃,∧2Ṽ

)
⊗ 10

)Z3×Z3

=
((

1, 0
∣∣∧2Ṽ

)
⊗ 10

)Z3×Z3

=

=
([

0, 1
∣∣0,∧2Ṽ

]
⊗ 10

)Z3×Z3

︸ ︷︷ ︸
=0

⊕
([

1, 0
∣∣0,∧2Ṽ

]
⊗ 10

)Z3×Z3

︸ ︷︷ ︸
=span{H,H̄}

. (4.26)

The dimensions and basis’ of the two terms on the right side of this expression are de-

termined by taking the tensor product of eqns. (4.10) and (4.23) and keeping the Z3 × Z3

invariant part. Note that the subspace forming the non-zero Yukawa couplings in eq. (4.19),

namely
[
1, 0

∣∣0,∧2Ṽ
]
, indeed projects to the Higgs–Higgs conjugate pair in the low energy

theory.

5. Yukawa couplings

To conclude, we analyzed cubic terms in the superpotential of the form

λu,ijQiHuj , λd,ijQiH̄dj, λν,ijLiHνj, λe,ijLiH̄ej (5.1)

where

• each coefficient λ is determined by an integral of the form of eq. (2.22),

• Qi,Li for i = 1, 2, 3 are the electroweak doublets of the three quarks/lepton families

respectively,

• uj,dj ,νj ,ej for j = 1, 2, 3 are the electroweak singlets of the three quark/lepton families

respectively,

• H is the Higgs field, and

• H̄ is the Higgs conjugate field.
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We found that they are subject to two independent selection rules coming from the two

independent torus fibrations. The first selection rule is that the total (p, q) degree is (2, 1).

Since the (p, q) degrees for the first quark/lepton family, the second and third quark/lepton

families and the Higgs fields are (0, 1), (1, 0) and (1, 0) respectively, it follows that the only

non-vanishing λ coefficients are of the form

λu,1j , λu,j1 λd,1j , λd,j1 λν,1j , λν,j1 λe,1j , λe,j1 (5.2)

for j = 2, 3. That is, the only non-zero Yukawa terms couple the first family to the second

and third families respectively. The second selection rule imposes independent constraints.

It states that the total [s, t] degree has to be [1, 1]. Of the two possible [s, t] degrees

associated with the Higgs fields, only the [1, 0] subspace satisfies the [s, t] selection rule.

Happily, this is precisely the component that projects to a H-H̄ pair at low energy. Hence,

the conclusion in eq. (5.2) is unaltered.

Let us analyze, for example, the Yukawa contribution to the up-quark mass matrix.

Assuming that H gets a non-vanishing vacuum expectation value 〈H〉 in its charge neutral

component, this contribution can be written as




0 λu,12〈H〉 λu,13〈H〉

λu,21〈H〉 0 0

λu,31〈H〉 0 0


 (5.3)

Using independent non-singular transformations on the Qi and ui fields, one can find bases

in which eq. (5.3) becomes 


0 0 0

0 λ〈H〉 0

0 0 λ〈H〉


 (5.4)

where λ is an arbitrary, but non-zero, real number. We conclude from the zero diagonal

element that one up-quark is strictly massless4. Furthermore, the two non-zero diagonal

elements imply that the second and third up-quarks will have non-vanishing masses of

O
(
〈H〉

)
. However, the exact value of their masses will depend on the explicit normalization

of the kinetic energy terms in the low energy theory. These masses, therefore, are in general

not degenerate. This analysis applies to the down-quarks and the up- and down-leptons

as well. We conclude that, prior to higher order and non-perturbative corrections, one

complete generation of quarks/leptons will be massless. The remaining two generations

will have non-vanishing masses on the order of the electroweak symmetry breaking scale

which are, generically, non-degenerate.

The coefficients λ have no interpretation as an intersection number and, therefore, no

reason to be constant over the moduli space. In general, we expect them to depend on the

moduli. Of course, to explicitly compute the quark/lepton masses one needs, in addition,

the Kähler potential, which determines the correct normalization of the fields.

4At least, on the classical level. Higher order and non-perturbative terms in the superpotential could

lead to naturally small corrections.
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